a-1火箭取得了成功,不过因为其极不可靠,最后被放弃。冯.布劳恩则继续发展a-2火箭。这个a-2火箭就很有开创意义了,哪怕是它外形跟a-1没有太大的区别,但内容却完全不同!
这个a-2火箭开创了一个新局面,首次在液体火箭上使用了挤压循环。其次为了提高飞行稳定性,控制火箭姿态的陀螺仪从弹头移到了弹体中部(a-1随着推进剂的消耗会越来越头重脚轻)。
第二项改进就不详细说了,重点说说第一项挤压循环。很多同志可能都不知道什么叫挤压循环,不知道这是干什么用的。众所周知火箭分为固体和液体两种,固体火箭相对简单,可以看做一个大号的炮仗,而液体火箭就相当复杂了。
要想理解液体火箭的工作原理,首先就要从其循环方式入手。为什么是循环方式入手呢?因为单说发动机不足以系统的概括液体火箭的推进装置。
液体火箭的推进系统实际上包括了两个部分,一个是发动机,另一个是推进剂增压输送系统(也就是循环方式)。而循环方式可以说是液体火箭发动机产生推力的基本要素。而循环方式都有哪些呢?
那就很多了,比如上面说的挤压循环,还有燃气发生循环、分级燃烧循环、膨胀循环等等。里面最早也最简单的循环方式就是挤压循环了。而要理解这种循环也很简单,初中物理中我们应该接触过“水火箭”。制作水火箭很简单,用可乐瓶加一个橡胶密封塞就够了。在瓶内装一部分水(不要太多也不要太少)发射前用打气筒向其中打入空气,挡瓶内的压力达到一定程度之后解脱固定,然后瓶内的压缩空气就会将水挤出来形成反作用力推动水火箭飞行。
而这就是典型的挤压循环。可以想象连常温下的水都能蕴含这么大的能量,如果瓶子里装的不是水而是水蒸气呢?高温高压的水蒸气经过喷管进行适当的膨胀可以产生更大的能量,蒸汽机的锅炉爆炸的威力同志们心里应该是有数的。
不过火箭上并不适用这一套方法,因为加热水需要能量,总不能给火箭也装个锅炉吧?并且加热水需要一个长期的过程,且水本身的重量也太大了,即使能够在火箭上将水烧成高压蒸汽,恐怕这个火箭也飞不了多高。
说到这里,就必须涉及到火箭发动机经常采用的一个概念——比冲。简单的说,比冲就是消耗一个单位推进剂产生的冲量。这个冲量是一个过程量,即力的作用对时间的积累效果,也就是力对时间的积分。对于火箭来说,我们不仅要足够“给力”,而且给力的时间太短也不行,至于太消耗推进剂那就更不行了。
回到冯.布劳恩的a-2火箭设计上来,想要提高氧气、酒精火箭的比冲,那么唯一的办法就是给推进剂加压,提高其流速。也就是前面水火箭里打气筒的作用。冯.布劳恩选择将陀螺仪从火箭头部移开之后,在这个位置他装了一个加压氮气瓶(即蓄压器),向推进剂贮存箱注入氮气后形成气枕,挤压液氧和酒精形成增压。这就是挤压循环。
到了a-3火箭的时候,冯.布劳恩又进了一步,在a-2的基础上进行了创新。他将加压氮气瓶埋入液氧储存箱当中,液氧贮存箱和氮气瓶呈同心布置。由于液氮的沸点低于液氧,因此被液氧包围的氮气瓶可以保持在很低的温度下。采用这种设计可以用较小的氮气瓶容纳较多的氮气,可以使发动机工作更长的时间,同时也较为节省弹体内部的空间。而这种布局也被后世的大型运载火箭和弹道导弹所继承。
而这就是挤压循环的基本原理,和其他的液体火箭循环方式不同之处在于,挤压循环不需要涡轮泵。尽管这导致此种循环方式性能较低,但也不是完全没有好处。比如提高了可靠性,将机械部件减少到了最低,并且推进剂在送入推力室之前不会相遇,也就避免了出现残液结冰的可能。
不过挤压循环的问题也是显著的,随着增压气体注入推进剂贮存箱,增压效果会随着时间推移变得越来越差。如果要延长火箭发动机的工作时间,就必须携带更多的推进剂,与此同时增压气体也要加量,结果必然导致将要携带一个巨大的增压气瓶,而作为一个压力容器其质量可想而知的大。更糟糕的是,挤压循环工作时会对推进剂贮藏箱施压,对了保证推进剂贮藏箱的安全,必然也要加强其结构,而这也将导致重量飙升。
也就是说挤压循环最后会陷入一个面多加水水多了再加面的恶性循环,其效能实在是有限。那么能不能跳出这个死胡同呢?
答案是可以。为液体火箭发动机增压的办法人类很早就想到了,比如说风箱就是一个加压的好办法。在蒸汽革命时代,为了增强锅炉的燃烧效率,工程师就想到了强圧通风的办法,说白了就是给锅炉加一个鼓风的泵。
俄国的航天先驱齐奥尔科夫斯基就最早意识到,要想充分发挥液体火箭的推进效率,就必须提高液体推进剂的压力,他很有前瞻性的提出了利用泵机对推进剂加压的方案。在1903年,这位航天先驱就绘制了一张液体火箭概念图。
这章没有结束,请点击下一页继续阅读!