轻轻深呼吸了一次,目光在大礼堂中扫视了一圈,徐川轻声的开口道:“有关于弱黎曼猜想的证明论文报告完成,接下来将是提问环节。”
“若在座的各位心中对于这份证明有什么疑惑或问题,现在可以举手提出来了,我将竭尽所能进行解答。”
话音落下,大礼堂中鸦雀无声,一只举起的手臂都没有。
看到这空旷的礼堂和静默的人群,徐川微微愣了一下,一时间有些没弄明白到底是什么情况。
面对弱黎曼猜想这种关乎整个数学界根基的证明,一个问题都没有?
大礼堂中,中后排的众人面面相觑,你看看我我看看你。
问题肯定是有的,但是前排的那些大佬们都没提问,他们哪里敢举手啊?
而前排,数学界的那些大牛们也你看看我,我看看你,一个举手的都没有,最终,所有人的视线都落到了法尔廷斯的身上。
这个曾经数学界的第一人,被誉为最接近格罗滕迪克的学者,也成为教皇之下第一人的学者,在黎曼猜想上的研究,对于黎曼猜想的了解,恐怕是当今世上第一。
即便是如今站在报告台上的那位解决了弱黎曼猜想,真要说两人在黎曼猜想上的研究和了解,谁强谁弱,可能还真不好说。
坐在前排的红色座椅上,法尔廷斯一脸的面无表情,仿佛没感受到众人投来的目光一样。
See what he does?
他又没什么问题,你们有问题的直接问就好了。
坐在法尔廷斯身边,陶哲轩有些惊讶的看了他一眼,有些意外。
如果法尔廷斯教授都没有任何的问题,那么弱黎曼猜想八成,不,九成以上是错不了了。
思索转念在脑海中飘转了一下,陶哲轩轻咳了一声,举起了自己的右手。
既然这样,那他来当第一个提问的人好了。
正好,关于黎曼函数的连续性居然会和物理学中的随机厄密矩阵本征值有联系这一点,他有一些没弄懂的地方。
报告台上,看着第一个举起手的陶哲轩,徐川也松了口气,眼神示意的点了点头。
大礼堂中,早就做好了准备工作的礼宾人员快步的小跑了过去,将话筒递给了陶哲轩教授。
接过黑色的话筒,轻咳了一下试了试麦,确认没有问题后,陶哲轩才开口道:“在报告论文的第四十二页,我有注意到报告者在完成黎曼函数的连续性处理时,有通过黎曼函数的非凡零点与厄米算符的本征值对应。关于这一部分,可以请报告者做一份详细的解释吗?”
报告台前,听到问题后徐川有些意外。
对于弱黎曼猜想来说,这一对应其实算不上核心证明过程中的重要步骤。
黎曼函数连续性和非平凡零点与和物理学中的随机厄密矩阵本征值对应严格来说并不是他的研究成果。而是米国数学家蒙哥马利上个世纪的发现,他只不过是在这份基础上进一步做了拓展,将其与弱黎曼函数紧密的关联到了一起而已。
思索了一下,徐川重新走回了黑板面前,将写满了算式的黑板翻了个面,露出了整洁的背面,一边从粉笔篓中拾起一只粉笔,一边开口解释道:
“厄米算符对应的不同本征值所对应的本征态是正交的,简单表示为:∫μ*mμndτ=δmn.....”
“且所有本征函数集合是一个完备的基底,可以用斯特姆刘维尔定理证明,即厄米算符的所有本征态就构成了一个正交归一的完备基底。与直角坐标系的x、y、z这几个基矢构成任意一个矢量类似,所有的基底和可以构成一个态.....”
简洁的对问题进行了一个解释后,徐川捏着粉笔,转身重新看向前排的陶哲轩
,笑着开口道:“系统越复杂,所对应的随机矩阵也越大(阶数越高)”
“当世界是连续的,对应于量子理论中的半经典模型(普朗克常量趋于 0)当阶数趋于∞时,对应于几何光学。而当阶数有限大时,世界是离散的,对应于量子理论(普朗克常量为有限值),对应于波动光学。”
“如果一个系统表现出了普遍性和广泛性的时候,就好比给自己贴了“我是复杂耦合系统”的标签,告诉人们可以用随机矩阵来建模它。这样的系统内部就像“导体”一样,会不断传递电子、热量、水流、能量等等。”
“将黎曼Zeta函数的零点对应到这个矩阵上,即是我给出的答案。”
“或许这将对解决黎曼假设起到重大暗示作用,但现在我还没有找到对应的方法。”
微微顿了顿,徐川似乎又想起了什么,接着补充了一句:“哦,对了。如果想要完全理解这套思路的话,或许这需要你们拥有一点点的物理体系知识。”
报告台下,在听完徐川的回答后,陶哲轩的目光中带着一丝若有所思的神色,随口道了一声‘谢谢’后便坐了下去。
有了陶哲轩的带头,提问环节也正式进入了正轨。
本小章还未完,请点击下一页继续阅读后面精彩内容!